منابع مشابه
On p-adic Artin L-functions II
Let p be a prime. Iwasawa’s famous conjecture relating Kubota-Leopoldt p-adic L-functions to the structure of certain Galois groups has been proven by Mazur and Wiles in [10]. Wiles later proved a far-reaching generalization involving p-adic L-functions for Hecke characters of finite order for a totally real number field in [14]. As we discussed in [5], an analogue of Iwasawa’s conjecture for p...
متن کاملOn the transfer congruence between p-adic Hecke L-functions
We prove the transfer congruence between p-adic Hecke L-functions for CM fields over cyclotomic extensions, which is a non-abelian generalization of the Kummer’s congruence. The ingredients of the proof include the comparison between Hilbert modular varieties, the q-expansion principle, and some modification of Hsieh’s Whittaker model for Katz’ Eisenstein series. As a first application, we prov...
متن کاملOn the smallest poles of Igusa’s p-adic zeta functions
Let K be a p-adic field. We explore Igusa’s p-adic zeta function, which is associated to a K-analytic function on an open and compact subset of Kn. First we deduce a formula for an important coefficient in the Laurent series of this meromorphic function at a candidate pole. Afterwards we use this formula to determine all values less than −1/2 for n = 2 and less than −1 for n = 3 which occur as ...
متن کاملRemarks on Macdonald’s book on p-adic spherical functions
When Ian Macdonald’s book Spherical functions on a group of p-adic type first appeared, it was one of a very small number of publications concerned with representations of p-adic groups. At just about that time, however, the subject began to bewidely recognized as indispensable in understanding automorphic forms, and the literature on the subject started to grow rapidly. Since it has by now gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2005
ISSN: 1225-1763
DOI: 10.4134/ckms.2005.20.4.657